University of Alaska Anchorage
CSCE A331 Programming Language Concepts

Speed vs. Accuracy: Heuristic Traveling
Salesman Problem Approaches

Moro Bamber, Youji Seto, Hiromi Kageyama

Department of Computer Science and Engineering, University of Alaska Anchorage

{mwbamber, yjseto, hpkageyama}@alaska.edu

Abstract— The Traveling Salesman Problem (TSP) is about
speed, but when does speed outweigh the importance of
accuracy? This paper explores this balance by presenting an
evaluation of three heuristic algorithms — the Christofides
Algorithm (CA), Ant Colony Optimization (ACO), and Genetic
Algorithm (GA) — in terms of their performance on both speed
and shortest path metrics. Through a series of experiments
conducted on TSP instances from Reinelt Gerhards’s TSPLIB
dataset, encompassing varying problem sizes, we collected data
on runtime and path length. Our findings reveal that while
further optimization of heuristic TSP solutions incurs overhead,
it also leads to improved path lengths.

Index Terms - TSP, Speed, Accuracy, Heuristic, Christofides, Ant
Colony Optimization, Genetic Algorithm, Performance, Optimal
Solution

I. INTRODUCTION
What are the computational limits of a computer? At the core
of computing is the P NP problem, where NP problems are
beyond the limits of computational power. The Travelling
Salesman problem is one of these NP problems [1].

The TSP is when given a graph and distances between
vertices, the goal is to visit every vertex in the graph and
return to the start on the shortest path possible. For a graph
with n vertices, there are (n-1)!/2 possible solutions, and only
1 is the optimal solution. Running a computation with
factorial time complexity to find the length of every path
possible is futile, computing resources quickly diminish
rapidly [2]. Heuristic - approximating - approaches were
developed to solve this issue and give a sub-optimal solution
but within reasonable time complexity [3]. Solving TSP
problems has applications outside of computer science, as it is
a problem in everyday life as well [4]. Take, for example, a
bus route in a city, using a TSP algorithm to create the shortest
path to hit all the stops would be of importance to the bus
driver, or problems that arise in DNA sequencing [5].

In this study we used three algorithms, the Christofides, Ant
Colony Optimization, and Genetic Algorithm, to study
runtime and optimal path length. All three algorithms were
implemented in C++. We chose C++ due to its speed at
runtime [6] and our desire to test larger problem sets within
the limits of computing power available. To start, we studied

the basics of these algorithms from Christiran Nilsson’s paper
[3]. The algorithms were chosen due to their allowance of
varying levels of optimization. To streamline the process of
problem selection for TSP algorithms, a TSP problem library
created by Reinelt Gerhard was used as our dataset [11]. It
allowed us to run the same problem across multiple algorithms
in the same input format.

I .CHRISTOFIDES AND 2 OPT SWAP

The Christofides Algorithm (or heuristic) is based on the idea
that finding a minimum spanning tree (MST) in a graph is not
computationally expensive. A MST is simply the smallest
weighted tree for a given set of points. It can be found using
Prim’s algorithm. Prim’s algorithm starts at an arbitrary
vertex and adds the smallest distance edge - meaning it’s
greedy; it does this for every vertex in the graph until all
vertices have been reached [14]. For the CA we used, both
used Prim’s algorithm to initially find a MST. From the MST,
a Hamiltonian path must be created to solve the problem. A
Hamiltonian path is a one where every node is visited once
and returns to the starting node. To do this, one must find the
perfect matches for vertices of an odd degree, this is to close
loops in the graph. Then one must create a Euler Circuit (a
path that visits every vertex and returns to the start), which is
then changed to a Hamiltonian Path by removing edges that
allow a visitation of a node twice. And thus the MST has been
transformed to a path that visits each vertex of the tour once,
creating a path for the TSP.

The 2-opt algorithm examines each edge in the path and looks
for optimizations. For all non adjacent edges it determines if
swapping its edge with an edge between two other vertices
would shorten the path. If so, the path is altered. 2-opt does
this until no more improvements can be made. The code used
to run the algorithm was modified for our purposes, the base
Algorithm was written by Dilson Lucas Pereira [15] and the
2-opt version was written by Rebecca Sag [16].

III. ANT COLONY OPTIMIZATION
The Ant Colony Optimization (ACO) algorithm takes
inspiration from the behavior of real ants to a MST using
combinations of heuristic information and pheromone scent.

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

In terms of the TSP, an ant initialized to a starting city will
traverse to the next city by first evaluating the heuristic
information, such as the shortest edge to the next city. The
first group of ants will continue to find the shortest path given
the heuristic knowledge until all cities have been visited and
returned to the home city. Once an ant completes a tour, a
pheromone scent will be placed on the edges the ant traversed.
The subsequent group of ants in the next iteration will use the
heuristic information and the pheromone scent to try to find
the shorter path. Increasing the number of iterations will
optimize the output with the cost of increased runtime. It is
also important to know that the optimization from each
subsequent has diminishing returns [12].

IV. GENETIC ALGORITHM
The Genetic Algorithm (GA) is a metaheuristic algorithm
inspired by the process of natural selection and has 5 phases.
The first phase is the initialization phase which generates a
population of potential solutions. These solutions are
typically represented as a string of numbers or symbols and
are often referred to as genotypes [18], [17].

The second phase is the evaluation phase. In this phase, each
solution, or individual, is run through a fitness function which
quantifies how good or bad the solution is with respect to the
problem being solved. This function acts like the environment
to help guide the evolutionary process, determining
individuals who are more likely to survive and reproduce [18],
[17].

The third phase is the selection phase where after the fitness of
each individual is evaluated, a selection process picks the
individuals with higher scores for reproduction. This ensures
the fitness score will increase over each generation,
mimicking the process of natural selection [18], [17].

The fourth phase is the reproduction phase. The individuals
selected will create offspring for the next generation through
genetic operators such as crossover and mutation. Crossover
involves combining genetic information from two parent
individuals to produce new offspring, while mutation
introduces random changes to the offspring's genetic material
[18], [17].

The fifth and final phase is the replacement phase. In this
phase, the offspring replace the least fit individuals in the
population, forming the next generation. Other than the
initialization phase, the other phases repeat until a termination
condition is met. This condition could be the max number of
generations reached, or a satisfactory fitness level of the
population [18], [17].

V. RELATED WORK
Prior research in the field of TSP problems have discussed
different approaches to address the challenges of finding

solutions heuristically [7]. Some studies have looked at
alternative ways to solve TSP instances [8][9]. We recognized
the need to evaluate tradeoffs between speed and solution
quality. Our study was inspired by the multithreaded approach
described by Wei et al. [10] which described the need for more
optimization for modern computing systems leveraging multi
core usage. And unlike other studies comparing different
algorithms, we focused on the impact of optimization levels
for a single heuristic algorithm . In sum, existing research has
contributed valuable insights into the speed and methodology
of other heuristic algorithms. We intended to expand this
knowledge further by trying to gain insight into configuration
of different heuristic TSP approaches.

VI. METHODS

A. Objective
The goal of this experiment is to determine which heuristic
approach is most applicable to a given need. We are studying
the tradeoffs between speed and optimization.

B. Testing Environment
We have configured an environment on a Virtual Machine to
run the code. Running on Oracle VM Virtual Box was an
Arch Linux OS with 10Gb. of memory and using 8 processors
of an AMD Ryzen 7.

C. Programming Language
All algorithms were compiled and executed using C++ version
11.

D. TSP Testing Data
Our testing data consists of TSP files with varying numbers of
vertices that we obtained from TSPLIB [4]. Four ‘tours’ were
chosen with 51, 150, 1002, and 4461 vertices respectively.
The names of these files were eil51, kroB150, pr1002, and
fnl4461. Since the programs were running in C++, we ran
make files to compile the code with adjustments to fit our
input and output files.

E. Christofides Implementation
Once the code to run was established, we used a base CA and
a CA with 2-opt optimization. 10 tests per problem were run
and we used the average runtime as a final runtime result for
time and the path length (which did not change on different
runs).

F. ACO Implementation
We used the ACO algorithm published on a public repository
on Github for our experiment [13]. The program comes with
both sequential and parallel models which we tested
separately. Across iterations ranging from one to twenty, we
measured the average runtime and output tour length produced
by the algorithm using specific TSP data. Our goal was to
observe how the ACO algorithm optimizes tour length with
increasing iterations and understand the trade-off between
runtime efficiency and tour length reduction. This analysis
allowed us to identify the iteration point where efficiency is
optimized and record how multithreading affects performance.

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

G. Genetic Algorithm Implementation

To implement the GA, we found a repository on Github and
modified the code to suit our experiment [19]. After setting up
the GA, 5 tests were run for each TSP. We took the average of
the first and last generation’s best path along with the runtime
and put the results in a table; runtime includes the time it took
to initialize the population. Comparing the first and last
generation allows us to observe the algorithm's efficiency in
finding the most optimal solution after running. The
termination condition of this algorithm was set to if the
average tour length subtracted by the best tour length in the
population equaled less than 0.001 in value [19].

VII. RESULTS
A. Christofides Test Results

Original Points eil51

Figure-1: eil51 base graph

Christofides 2-Opt Path

Figure-2: Result Path of Christofides 2-opt
Path Length: 432

Base Christofides Path

Figure-3: Result Path of Christofides no 2-opt
Path Length: 484

Comparing Figure-1 to both Figures 2 & 3 gives us insight
into what a TSP heuristic approach is doing. It sees a mess of
points and edges, and determines a better way to visit all the
points. We can also discern some differences between the path
generated from the Christofides 2-opt path (Figure-2) and the
graph generated from the base Christofides algorithm
(Figure-3). These differences amount to a Christofides base
algorithm path length difference of 52 compared to the 2-opt
graph, an extra 12% longer than the 2-opt graph. However, if
we compare the runtime, the base Christofides algorithm was
0.02 seconds quicker.

problem |eil51 kroB150

algo time(s) |path time(s) [path
ca_base | 0.0007 484| 0.0082| 30168
ca_2opt | 0.0299 4321 0.0934| 27291
% diff 190.72 11.35| 167.78 10.01
Table-1: Results of CA Tests Part 1

problem |pr1002 fnl4461

algo time(s) |path time(s) [path
ca_base 1.155 288129| 92.2858| 207400
ca_2opt 17.263 275440| 112.841| 195625
% diff 174.91 4.50 20.04 5.84

Table-2: Results of CA Tests Part 2

We found with the CA that the base algorithm was
consistently faster than the 2-opt. With the largest percent
difference in time being for the small problem with 51 cities at
a percent difference of 190%. The smallest percent difference
in runtime was the largest problem with 4461 points. The
percent difference was only 20%. We also found that 2-opt
outperformed the base algo over every test in terms of path

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

length. The largest difference was for the 150 point problem
at 10%, and the smallest was for 1002 points at 4.5%, the
average path length difference was 8%.

B. ACO Test Results

Sequential Convergence Chart
150 = eil51
== kroB150
pr1002

== fnl 4461
100

50

Length/Runtime (ms)

Iteration

Figure-4: Convergence Chart of ACO Sequential Test

Parallel Convergence Chart

== eil51 == kroB150 pr1002 == fni4461

500
400
300

200

Length/Runtime (ms)

100

5 10 15 20

Iteration

Figure-5: Convergence chart of ACO Parallel Test

The convergence chart shows how the greatest change in
efficiency occurred during the first 5 iterations but begins to
converge afterwards especially for the TSP with smaller
datasets.

Average Runtime Comparison
== Sequntial == Parallel

400000

300000

200000

Runtime (ms)

100000

5 10 15 20

Iteration

Figure-6: Average Runtime Comparison Between ACO
sequential and parallel

The average runtime as the number of iterations increases
follows a positive linear trend for both sequential and parallel.
This data gives a glimpse of how the runtime increases as the
number of iterations increases. This chart also shows the
average runtime difference between running the algorithm in
parallel using 10 threads versus sequentially. The exact
percent difference between the runtime ranged between 137
and 149 percent.

Sequential and Parallel Solution Comparison

400000 __ == eil51 Sequntial

== eil51 Parallel
S~ kroB150 Sequntial
300000 = - kroB150 Parallel
== pr1004 Sequential
== pr1004 Parallel
fnl4461 Sequential

fnl4461 Parallel

200000

Tour Length

100000

5 10 15 20

Iteration

Figure-7: Tour Comparison Between ACO Sequential and
Parallel

Running the ACO algorithm sequentially vs. multithreaded
does not impact the solution. This chart shows that both had
very similar tour lengths despite the difference in runtime..

problem eil51 kroB150
algo time(s) path time(s) path
Sequenti
al 0.21 459.469 1.286 28732.1
Parallel 0.031 451.147 0.225 28681.8
% diff 148.55 1.83 140.44 0.18

University of Alaska Anchorage

CSCE A331 Programming Language Concepts

Table-3: Shortest Tour Length Results of ACO Tests Part 1

problem pr1002 fnl4461
algo time(s) path time(s) path
Sequenti
al 48.242 | 308016 | 1027.84 | 222283
Parallel 8.219 306849 | 189.499 | 222205
% diff 141.77 0.38 137.73 0.04

Table-4: Shortest Tour Length Results of ACO Tests Part 2

C. Genetic Algorithm Test Results

Tables 5 and 6 reveal the performance of the GA. We took the
average of 5 trials and separated the data into 2 tables.
Iteration represents the generation of the population and
always initializes at 0. The generation continues to increment
until the termination condition is met. The average last
generation is listed below the initial generation. Path
represents the most optimal solution in the population at the
current generation.

Problem| Iteration (Gen) Path Run Time (s)
0 428.2
eli51 0.3238
104 426
0 26597
kroB150 0.7806
112.6 26130

Table-5: Genetic Algorithm Results Part 1

Running TSPs with 150 cities doubles in run time and has a
difference of about 8 iterations when compared to a TSP with

51 cities.
Problem| Iteration (Gen) Path Run Time (s)
0 273317.4
pr1002 13.5736
231 259045
0 192321.6
fnl4461 181.0544
794 182570.2

Table-6: Genetic Algorithm Results Part 2

Increasing the city count to 1002 doubles the iteration count
and increases the run time to more than 17 times compared to
a TSP with 150 cities. When the city count further increases to
4461, the iteration count almost bumps up 3.5 times and the

run time increases more than 13 times.

fnl4461: CF vs ACO vs Genetic Solution Comparison

250000
200000
150000

100000

Tour Length

50000

0
Genetic

cf_base

cf_2opt Sequential/Parallel

algo

Figure-8: fnl4461: CA vs ACO vs Genetic Solution
Comparison

This chart compares the solution tour length for each of the
three algorithms for the fnl4461 TSP dataset. The lower the
number or smaller the bar graph, the more optimal the solution
is. Sequential and Parallel have the output as running the ACO

algorithm with multiple threads only affects runtime.

fnl4461: CF vs ACO vs Genetic Runtime Comparison

1250
1000
750

500

Runtime (s)

250

0

cf_base cf_2opt Sequential Parallel Genetic

algo

Figure-9: fnl4461: CA vs ACO vs Genetic Runtime

Comparison

The CA algorithm had the most efficient runtime whereas the
sequential ACO algorithm was by far the slowest, almost ten
times slower than the CA algorithm. It is also important to
note that the ACO running in parallel with 10 threads
performed at the same, if not slower, than the CA and GA
which are not multi-threaded.

VIII. DISCUSSION
The main goal in our experiments was to identify the speed
and path length for a given TSP for different algorithms of
varying optimization. We have achieved this goal. While
some results may not be surprising, we are content with the
data we gathered and hope it gives insight into heuristic
approaches to the TSP.

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

For the tests involving the CA, we saw that for both metrics -
speed and path length - that one implementation was better
than the other. The base algorithm was always faster than the
2-opt, and vice-versa for runtime. The speed difference was
extremely noticeable at lower point counts, but not so for the
largest problem we tested. It is implied that the 2-opt swap
will add time to the computational process at an order of
O(m*n”2) where m is the number of times 2-opt is run, and n
is the number of points in the graph. However, it outperformed
the base algorithm in terms of path length. It was able to
consistently optimize the base Christofides path length. The
goal of a heuristic algorithm is to find a suboptimal solution in
reasonable time. We believe that both CA’s do this well.
However, if one is in need of pure speed, the base CA will do
fine, if more accuracy is needed, then the 2-opt swap will need
to be performed, adding extra runtime. We feel that the use of
either depends on the context of the situation, especially on a
larger problem set. In the future we would like to build on the
CA to use simulated annealing in C++. Simulated annealing
allows for suboptimal 2-opt swaps to occur on the chance it
shortens the path length eventually. We believe threading the
Simulated Annealing optimization would be an excellent
addition to the data presented in this paper.

The ACO algorithm test results when comparing how the
number of iteration affects solution and runtime shows us that
the algorithm efficiency decreases overall as the number of
iterations increase and that the greatest change of convergence
occurred between iterations 1 through 5 for all of the TSPs. By
iteration 20, our results show that the graph has reached a
stage of diminishing returns where after a certain number of
iterations the solution quality plateaus despite increasing
runtime (Figure -1,2).

Comparing the Tour Length and runtime between Sequential
and Parallel versions of the ACO algorithm, shows us that
although running the ACO algorithm in parallel using 10
threads did not make noticeable change in tour length, it made
drastic improvements in runtime (figure 6,7). This difference
was calculated to be between 137.73% to 148.55% difference
(Table-3,4).

Looking at the results for the GA, eli51 and kroB150 have
similar iteration counts (difference of about 8 on average)
despite having a difference in city count of about 3 times. The
initial best path of the population for each trial had a nice
spread of randomness which allowed the algorithm to show its
efficiency in finding the most optimal solution. The last
generation of each trial outputs the same path for eli51,
kroB150, and pr1002. The only exception for this trend is
fnl4461 since the path of the last generation changes for each
trial. This can be due to reaching the termination condition
before finding the most optimal solution. Running TSPs with
more cities will help us understand why the last generation for
each trial outputs different results for each trial’s path.

If we take a look at the path efficiency, GA provides the best
results when compared to CA and ACO. Despite being the
best path finding algorithm, the runtime is not as efficient. By
far, CA is the most efficient algorithm in runtime with ACO in
second place when running in parallel. However, it seems that
ACO might run slower with more cities compared to the GA,
as we can see in problem fnl4461.

Figure 8 compares the path efficiency of all 3 algorithms and
figure 9 compares the runtime efficiency. We can visualize the
differences of each algorithm with the help of these two
figures and one thing to note is that the tour length of each
algorithm is fairly similar. As stated above, the best path
finding algorithm was the Genetic Algorithm, but in terms of
runtime the Christofides Algorithm was the most efficient.
The Sequential version of ACO was extremely slow needing
about 1,000 seconds while the other algorithms took less than
190 seconds. If we were to choose an algorithm based on these
results, the criteria of selection would be the most optimal tour
length as a higher priority than runtime.

IX. CONCLUSION

Our study focused on evaluating three heuristic algorithms
and how they balance runtime efficiency and solution quality
in solving the Traveling Salesman Problem. Our findings
revealed distinct characteristics of the Christofides (CA), Ant
Colony Optimization (ACO), and Genetic Algorithm (GA)
that demonstrate the differences in solving and optimizing the
TSP. While the ACO algorithm provides optimization efforts,
its computational overhead introduces diminishing solution
quality and increased runtime. The CA algorithm with 2-opt
added computational overhead, but with the guarantee of a
shorter path length. With larger problems, the difference in
runtime with added optimization is decreased, so the tradeoff
between performance and path length is desirable. Both the
Christofides and Genetic Algorithm provided a shorter
solution with much more efficient runtime leading us to
believe that not all optimization efforts enhance solution
quality, although ACO was more efficient in executing when
running in parallel compared to the Genetic Algorithm.

The results we gained from evaluating the three algorithms
underscores the importance of considering multiple factors,
including resources, problem complexity, and desired solution
accuracy, when selecting an appropriate heuristic algorithm for
the TSP. By recognizing the different trade-offs between
runtime and solution efficiency, practitioners can make
informed decisions tailored to their specific requirements and
constraints.

Moving forwards, our study sets the stage for future research
with the goal to refine heuristic algorithms and develop hybrid
approaches that leverage the strength of different optimization
strategies. By utilizing the data obtained from our experiment,

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

future researchers can achieve more optimal solutions for the
TSP while reducing computational overhead and runtime
complexity.

REFERENCES
[1] Kochkarov, R. (2021, October 31). Research of
NP-Complete Problems in the Class of Pre-Fractal Graphs.
Mathematics, 9(21).
https://www.mdpi.com/2227-7390/9/21/2764

[2] Borwein, P. B. (1985, September). On the Complexity of
Calculating Factorials. Journal of Algorithms, 6(3), 376-380.
https://www.sciencedirect.com/science/article/abs/pii/0196677
485900069

[3] Nilsson, Christian. (2003). Heuristics for the Traveling
Salesman Problem.

[4] Lenstra, J. K., & Rinnooy Khan, A. H.G. (1975,
November). Some Simple Applications of the Travelling
Salesman Problem. Operational Research Quarterly, 26(4),
717-733. https://www.jstor.org/stable/3008306?seq=4

[5] Lenstra, J. K., & Rinnooy Khan, A. H.G. (1975,
November). Some Simple Applications of the Travelling
Salesman Problem. Operational Research Quarterly, 26(4),
717-733. https://www.]jstor.org/stable/3008306?seq=4

[6] Performances of Sorting Algorithms
Programming Languages - Durrani et al. 2022.

in Popular

[7] C. Zhang and P. Sun, "Heuristic Methods for Solving the
Traveling Salesman Problem (TSP): A Comparative Study,"
2023 IEEE 34th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications
(PIMRC), Toronto, ON, Canada, 2023, pp. 1-6, doi:
10.1109/PIMRC56721.2023.10293957

[8] Abdulkarim, Haider & Alshammari, Ibrahim Fadhil.
(2015). Comparison of Algorithms for Solving Traveling
Salesman Problem. International Journal of Engineering and
Advanced Technology. ISSN. 2249 — 8958.

[9] Halim, A.H., Ismail, I. Combinatorial Optimization:
Comparison of Heuristic Algorithms in Traveling Salesman
Problem. Arch Computational — Methods Eng 26,
367-380(2019).https://doi.org/10.1007/s11831-017-9247-y

[10] Wei, X., Ma, L., Zhang, H., & Liu, Y. (2021).
Multi-core-, multi-thread-based optimization algorithm for
large-scale traveling salesman problem. Alexandria
Engineering Journal, 60(1), 189-197.
https://www.sciencedirect.com/science/article/pii/S111001682
0303227

[11] Wei, X., Ma, L., Zhang, H., & Liu, Y. (2021). Multi-core-,
multi-thread-based optimization algorithm for large-scale
traveling salesman problem. Alexandria Engineering Journal,
60(1), 189-197.
https://www.sciencedirect.com/science/article/pii/S111001682
0303227

[12]Ja-k.“GitHubJa-k/Ant-Colony-Optimization-for-TSP-Prob
lem: Ant Colony Optimization (ACO) for Solving Traveling
Salesman Problem (TSP) Using Multi-Threading as Well as
Sequential Programming in C++11.” GitHub,
https://github.com/Ja-k/Ant-Colony-Optimization-for-TSP-Pro
blem. Accessed 13 Apr. 2024.

[13] Stutzle, Thomas, and Marco DORIGO. ACO Algorithms
for the Traveling Salesman Problemf.

[14] BSTJ 36: 6. November 1957: Shortest Connection
Networks And Some Generalizations. (Prim, R.C.)

[15] Pereira, Dilson L. “christofides-algorithm.” GitHub,
https://github.com/dilsonpereira/christofides-algorithm.
Accessed 21 March 2024.

[16] Sag, Rebecca. “traveling-salesman.” GitHub,
https://github.com/beckysag/traveling-salesman. Accessed 22
March 2024.

[17] G. Ye and X. Rui, "An improved simulated annealing
andgenetic algorithm for TSP," 2013 5th IEEE International
Conference on Broadband Network & Multimedia
Technology, Guilin, China, 2013, pp. 6-9, doi:
10.1109/ICBNMT.2013.6823904.

[18] Zhu, Yu, and Lin Wu. “Structure Study of Multiple
Traveling Salesman Problem Using Genetic Algorithm | IEEE
Conference Publication | IEEE Xplore.” IEEE Xplore, IEEE,
June 2019, ieeexplore.ieee.org/document/8787633. Accessed
14 Apr. 2024.

[19] Sugia. “Genetic Algorithm for Traveling Salesman
Problem.” GitHub, github.com/sugia/GA-for-TSP. Accessed
13 Apr. 2024.

APPENDIX

Member Contributions

Moro Bamber
e Abstract
e . INTRODUCTION
e II. CHRISTOFIDES ALGORITHM AND 2-OPT
SWAP
V. RELATED WORKS
e VIMETHODS (A-E)
e VII. RESULTS
o A.CHRISTOFIDES ALGORITHM

https://www.sciencedirect.com/science/article/pii/S1110016820303227
https://www.sciencedirect.com/science/article/pii/S1110016820303227

University of Alaska Anchorage
CSCE A331 Programming Language Concepts

VII DISCUSSION
CONCLUSION

Youji Seto

III. ANT COLONY OPTIMIZATION
VI. METHODS

o F. ACO IMPLEMENTATION
VII RESULTS

o B. ACO Test Results
VIII. DISCUSSION
CONCLUSION

Hiromi Kageyama

IV. GENETIC ALGORITHM
VI. METHODS

o G. Genetic Algorithm Implementation
VII. RESULTS

o C. Genetic Algorithm Test Results
VII. DISCUSSION

o Last 3 paragraphs
CONCLUSION

o Last sentence of 1st paragraph

We feel like work was distributed equally.

