
Operating Systems CSCE A321 University of Alaska Anchorage

Performance Analysis of File Systems: A
Comparison of File Access time and I/O

Operations
Moro Bamber, Sam Lilly

Abstract— File Systems (FS) are a crucial component in an
Operating System (OS). Benchmarking file system performance
is as important as ever as we move into the age of big data.
Whether it's Microcostf NTFS, or the widely used ext4 system on
Linux distributions, understanding their performance is essential
in this day and age. Previous studies have shown that
benchmarking a file system is more complicated than one may
think. We conducted file system benchmarking experiments on
both a Oracle Virtual Machine and an NVMe SSD. Part of the
experiments were conducted using a micro-workload written for
a program called Filebench. We then used a program called
Iozone for a more system wide study of read and write
operations, simulating a macro wordload. We leveraged a
program called Geriatrix that ages file systems to simulate a
more real world environment. On the Oracle virtual machine we
found that on a micro workload, the fs f2fs was the fastest, but
for the macro workload the fs xfs performed the best.
Benchmarks run using ext4 on the SSD obtained similar results,
exposing slight overheads in virtualization.

Index Terms— File System, OS, Iozone, Filebench, Geriatrix

INTRODUCTION
In Operating Systems (OSes), the File System plays a pivotal
role in read and write access as well as movement and storage
of the contents of the machine. In modern computing, speed is
of the utmost importance. I/O is a component to an OS that
should function as fast as possible to reduce blocking states
for processes. File systems play a crucial role in internet
infrastructure, and understanding how they perform is
important [1]. In this paper we look at different file systems
and how they perform in different scenarios. Using tools
developed specifically for file system benchmarking we
determined key insights into the speed of different file systems
as well as examining some effects memory has on throughput
speeds. We examined criteria for a good benchmarking system
as stated by Kahanwal and Singe in [2]. With this criteria we
selected filebench and iozone as benchmarking programs used
in this study. We aimed for reproducibility of each benchmark
with results that reflected real life workloads. Our goal was to
compare file systems and create tests to provide important
metrics regarding general throughput. Additionally, we wanted
to attempt to recognize any latencies or overheads given by
our procedures. As part of our study, we examined workloads
on a virtual machine. We saw this as an important aspect to the
study as more and more systems are running on virtual
machines [3]. The remainder of the study was done using a
physical computer. To simulate an accurate

environment, Geriatrix was used to age the file system and
revert to the same state for each benchmark.

FILEBENCH
We used the program Filebench to test our
microworkloads. Filebench was chosen due to its
flexibility in creating tests. While it comes with
predfiended workloads, we tweaked them to fit
parameters specific to the OSes and machines we were
using. Defining workloads in Filebench is easy due to its
Workload Model Language (WML) which allows the
user to easily define specific workloads. For our tests we
used a minute as the timespan for the test which is the
default for Filebench. As with most experiments, a test
should be run several times, this is the same with
Filebench. Iozone does not have a set runtime. It does all
the tests for different read and write operations and
outputs the results once finished.

IOZONE
Iozone was the tool we used for our macro workload.
Iozone is a powerful tool that generates bandwidth data
among other metrics for the user after running a more
comprehensive and larger benchmark test for the file
system. Iozone is run from a C file and has options to
generate various types of graphs. We used Iozone in the
automatic mode which produces output that covers all
test file operations (Read, write, re-write, re-read, etc.)
but for this study we were only interested in read and
write. As with Filebench we used a warm cache and
aimed to have the machine in an identical state to get
reproducible results. Using the data generated from
Iozone we were also able to gain insight into file system
performance.

GERIATRIX
Geriatrix is an open source file-system aging application
that generates reproducible images. It includes definable
parameters that allow for customizable environments to
be made. The throughput of SSDs are greatly impacted
depending on the aging of the file system [1]. Since an
NVMe SSD was used for tests, Geriatrix gave a more
real world environment to be simulated. We chose
Geriatrix opposed to similar file-system aging
applications as it induces fragmentation to both free
space and allocated files.

Operating Systems CSCE A321 University of Alaska Anchorage

RELATED WORKS
File system benchmarking has always been relevant in the
field of computer science. We recognize the difficulties in
performing file system benchmarking and overhead caused by
these programs highlighted by Tarasov et al. [4]. Overcoming
the nuances of benchmarking is difficult, and better tools for
the task are yet to be developed. We also recognize the
variability in benchmarking described by Cao et al [5]. Work
has been done in this field to improve, and understand how to
better benchmark, a survey of this landscape was conducted
by Traeger and Zadok back in 2007 [6]. Improvements to
benchmarking systems since this survey have been made.
Zadok and Tarasov - a co-author and [4] and [5] - started
contributing to FIlebench after these surveys and improved the
program. They wrote the guide [7] to Filebench used to run
the tests in this study. In this study we seek to build on prior
benchmarking work while also doing tests on hardware within
reach to the average computer owning person.

Methods
Using both a macro and micro file system benchmarking tool
was critical to our study. Macro-benchmarks run multiple
operations to provide the performance of a larger workload.
The micro-benchmarks run fewer operations, but allow
specific parts of systems to be isolated. These combined
results obtain more relevant information for a real workload.
For consistency and reproducibility, the file system was aged
using Geratrix to produce a realistic file system. Each test was
run on the same hardware, with the specifications listed in the
Appendix. To further reflect real life systems, we used a warm
cache. Systems generally operate after already undergoing
activity, therefore a cold cache approach would give
undesirable results. Achieving a warm cache was done by
running the same test a consistent amount of times and
discarding the first result. Benchmarking was run across four
different file systems using a virtual machine, then conducted
using a single file system on a physical computer.

VIRTUAL MACHINE METHODS
We used the Oracle VM VirtualBox to create four virtual
machine’s (VM’s) with the standard Arch Linux image file[8].
Each VM was configured to use a different file system. The
file systems used were btrfs, ext4, xfs, and f2fs. The memory
for all VM’s was set to 10 GB, and allowed for four
processors. Using the archinstall script, we configured the
machine to run the GNOME desktop environment for ease of
use. Once the VM’s were set up, filebench and iozone were
installed. Using the command line, we did several runs of the
filebench workload to warm up the cache. Once the cache
was warm, we ran the test workload five times per file system
to achieve results. The workload in question used four
threads, with 1000 files. Each file was 1 KB in size and upon
start of the test, the memory was preallocated. The workload
consisted of three operations or ‘flowops’. One to open a file,
read the file, then close the file. We let this test run for 60
seconds. To control for processing speed, all tests were done
with no other applications open except the terminal. On the

host machine, Oracle VM was the only application opened to
not use too much CPU power.

PHYSICAL COMPUTER METHODS
Experiments run on the physical computer were done
using the 6.8.2 kernel version of Arch Linux. All
benchmarks were run on the root partition using the ext4
filesystem. This filesystem was chosen as it remains the
most popular and default among Linux distributions. The
filesystem was aged using Geriatrix with a 860 GB
image, allowing 120 GB remaining space for
benchmarking to be conducted. Geriatrix had reached
convergence at 50 iterations, executing a 43 TB
workload. This was done using the Wang-OS profile, as
it had the oldest age distribution among profiles [8].
After any benchmarking had been completed, the system
was restored to its previous image to ensure consistent
results. Experiments were conducted using a modified
workload of the previous section. Filebench authors
found a workload should be at least two times the size of
system memory to ensure sufficient I/O activity [7]. To
better fit system parameters, the size of each file was
changed to 120 KB, and the number of threads was
increased to 12. With a warm cache, each test was run 5
times with 600 seconds. Each filebench workload was
run for 10 minutes to ensure a consistently warm cache
and results given from a stable state. Iozone benchmarks
were run using a maximum 64 GB file size on write/read
tests for an accurate comparison to filebench
benchmarks. The cache size was set to 32 MB with a
default cache line size of 1 MB. These parameters were
changed for a benchmark discussed in a further section.

RESULTS
RESULTS FOR VM’S

The results from the filebench tests for the virtual
machine running Arch Linux yielded similar results.
Though, f2fs was faster in both operations per second
(ops/s), and read/write megabits per second (rd/wr mb/s).

Table 1 - VM Filebench Results

fs ops/s rd/wr
mb/s

btrfs 1717265 559

ext4 1774885 570.84

xfs 1747567 568.88

f2fs 1822342 593.22

Operating Systems CSCE A321 University of Alaska Anchorage

Figure 1 - VM Filebench ops/s

Figure 2 - VM Filebench read/write mb/s

VM IOZONE RESULTS
Iozone generates statistics for the performance of many
different file operations. Among which include write,
read, re-write, re-read, random-read, random-write, and
backward read. For this experiment, we will only be
concerned with the performance of reading and writing.

For the Iozone writing test, xfs was the fastest with an
average of 3973171 KB/s over all record and file sizes.
Second fastest was btrfs at 1541660, third was f2fs at
1494868 and last was ext4 at 1027459. xfs performed
extremely well with large record sizes and large file sizes
with a maximum occurring at a file size of 524288 KB
and a record size of 4096 KB.

For the reading tests xfs once again outclassed the other
file sytstems. Its average read in kb/s was 8608748, the
next closest was f2fs at 3108705 KB/s. btrfs and ext4
were 2844643 KB/s and 2737791 KB/s respectively. For
the fastest - xfs - it performed the best in the low file size
and medium size record and performed the lowest in the
low record size, low file size category. This trend
occurred for all file systems tested.

Figure 3 - xfs write VM. Scale 0 - 1.5E07

Figure 4 - ext4 write VM. Scale 0 - 2.0E06

Figure 5 - xfs read VM. Scale 0-3.0E07

Operating Systems CSCE A321 University of Alaska Anchorage

Figure 6 - ext4 read VM. Scale 0-3.0E07

PHYSICAL COMPUTER RESULTS
Filebench gave an average read/write speed of 590.4
MB/s on the ext4 file system installed on the physical
computer. These speeds are only 6.4% speed of the
iozone benchmark performing the same operation. This
discrepancy is expected and will be discussed in the next
section.

Figure 7 - ext4 write (Physical Computer)

Figure 8 - ext4 read (Physical Computer)

For all iozone graphs, any area indicating 0 are
non-measured areas. In order to save excessive time, file
sizes greater than 32 MB are not measured when the
requested record size is less than 64 KB. On the physical
computer running the iozone benchmark, ext4 achieved
an average write speed of 1466577 KB/s or 1466 MB/s.
Write operations completed with greater than 16 GB file
size decline greatly in throughput, with files greater than
64 GB averaging 1384 MB/s. The read operations of
ext4 on the physical computer achieved an average speed
of 11109571 KB/s or 11109 MB/s. Read operations with
a file size exceeding 64 GB had a speed of only 1583
MB/s.

DISCUSSION
For the VM Arch Linux results, f2fs was the fastest in
both metrics presented. It could do more ops/s in 60s
than the others and it could read and write faster as well.
More variance in tests would have been better to do,
since we only tested one type of workload, but for the
purposes of examining both micro and macro aspects of
a file system, we believe it worked well. Using Iozone
did not conclude that f2fs was faster on a macro level as
well as a micro level. It did well, but not compared to
xfs. xfs completely outperformed the other file systems,
and by wide margins. We can also see that there is not
necessarily a correlation between write speed and read
speed, for example, btrfs was slightly faster than f2fs for
writing, but f2fs was considerably faster at reading.
From the results obtained from the VM’s we tested, we
can say that f2fs worked better on a micro level, and xfs
worked best on a macro level.

In both the VM and physical computer results, filebench
operated at significantly slower speeds than iozone. This
is expected due to the nature of the benchmarks and the
workloads executed. The intent of filebench is to provide
an accurate workload simulating different pattern access
of files with more threads than iozone, even with the
same operations. Additionally, taking the average of read
and write speeds from iozone results in a measure of
CPU cache speeds rather than I/O performance. For the
physical computer, once file size exceeds that of system
memory (64 GB) the speeds become more indicative of
actual I/O performance. These effects on the iozone
benchmarks can be seen looking at the highest
throughputs in the graphs. Take for example Figure 8, the
highest peak at 64 KB shows the effect of the L1 cache
on throughput speeds. Following the next peaks show the
L2 and L3 cache effects until operations require the
buffer cache. Comparing the graphs of iozone ext4 write
benchmarks for the VM and physical computer, we can
make some inferences for the difference in performance.
The higher throughput with the smallest file and record
size of the physical computer could indicate better

Operating Systems CSCE A321 University of Alaska Anchorage

utilization of the CPU cache than that of the virtual
machine. Additionally, the dips throughout Figure 4
could come from latencies intrinsic with the hypervisor
layer.

CONCLUSION
An important aspect of file system performance is the
environment. Results indicated some overheads resulting
from VM benchmarking, however a more accurate
system comparison would be required for quantitative
conclusions. Based on VM benchmarks xfs has the
highest read/write performance specifically for larger file
and record sizes. However, under a smaller yet realistic
workload f2fs performs faster. Benchmarks on the
physical computer and VM show stability of the ext4 file
system valid for average users. Benchmarks of xfs
indicate a suitable performance for database enterprises
or server environments, which include workload sizes
magnitudes larger than average. The f2fs file system
proved suitable for both applications. Therefore, it is
important to correlate the purpose of the machine to the
requirements of the file system.

REFERENCES
[1] Chen M. et al. Newer is Sometimes Better: An
Evaluation of NFSv4.1. June, 2015. ACM Sigmetrics
Conference

[2] Kahanwal, B, Singh, T. P. Towards the Framework of
the File Systems Performance Evaluation Techniques
and the Taxonomy of Replay Traces

[3] Tarasov et al. Virtual Machine Workloads: The Case
for New Benchmarks for NAS. February, 2013. 13th
USENIX Conference on File and Storage Technologies

[4] Tarasov et al. Benchmarking File System
Benchmarking: It IS Rocket Science. May, 2011. 13th
USENIX Workshop in Hot Topics in Operating Systems.

[5] Cao, Zhen, and Vasily Tarasov. “On the Performance
Variation in Modern Storage Stacks.” Proceedings of the
15th USENIX Conference on File and Storage
Technologies (FAST '17), 2017, pp. 329-343,
https://www.fsl.cs.sunysb.edu/docs/evos/evos-instability-
fast17.pdf.

[6] Traeger, A., and E. Zadok. “Notes on a Nine Year
Study of File System and Storage Benchmarking.” Byte
and Switch, 2009. Accessed
www.byteandswitch.com/storage/storage-management/n
otes-on-a-nine-year-study-of-file-system-and-storage-ben
chmarking.php

[7] Tarasov, Vasily, and Erez Zadok. “{Filebench}: A
Flexible Framework for File System Benchmarking.”
;login: The USENIX Magazine, vol. 41, no. 1, 2016, pp.
6-12, https://www.usenix.org/publications/login/.

[8] Kadekodi et al. Geriatrix: Aging what you see and
what you don’t see. A file system aging approach for
modern storage systems. July, 2018. In USENIX Annual
Technial Conference ‘18.

[9] Arch Linux Image File.
https://archlinux.org/download/

Appendix
filebench Version 1.15.3

Custom Workload Source Code:
#Test Workload for OS

set $nthreads=4

define fileset
name="testF",entries=1000,filesize=1k,prealloc,path="/tmp"

define process name="readerP",instances=1 {
thread name="readerT",instances=$nthreads {
flowop openfile name="openOP",filesetname="testF"
flowop readwholefile name="readOP",filename="testF"
flowop closefile name="closeOP"
}
}

run 60

iozone v. 3_414

Relevant physical computer specifications:
● WD_BLACK SN770 NVMe SSD
● AMD Ryzen 5 3600X CPU
● ArchLinux Kernel Version 6.8.2

Member Contributions

Moro Bamber
● Most of Abstract
● Most of the Introduction
● Filebench introduction
● Iozone introduction
● Related Works
● Virtual Machine Methods
● Virtual Machine Results
● Discussion Related to Virtual Machines

Sam Lilly
● Rest of most
● Geriatrix introduction
● Methods
● Physical Machine Methods

Operating Systems CSCE A321 University of Alaska Anchorage

● Physical Machine Results
● Second part of discussion
● Conclusion

We feel like we did equal work

